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A new three-parameter class of solutions to the Einstein vacuum equations is 
presented which represents the collision of a pair of gravitational plane waves. 
Depending on the choice of the parameters, one of the colliding waves has a 
smooth or unbounded wavefront, or it is a shock, or impulsive, or shock accom- 
panied by an impulsive wave, while the second is any of the above types. A sub- 
family of the solutions develops no curvature singularity in the interaction 
region formed by the colliding waves. 

1. I N T R O D U C T I O N  

Thanks to the development of new techniques for integrating the corre- 
sponding field equations, several new analytic models representing the 
collision of gravitational plane waves have been added recently to the 
original collection which we owe to Szekeres [1, 2], Khan and Penrose 
[-3], and Nutku and Halil [4]. (For a recent review, see Ref. [5].). One 
such method was developed by Chandrasekhar and Ferrari [6] and relies 
on the similarity of space-times admitting two space-like Killing vectors to 
those admitting one space-like and one time-like Killing vector field. 
Another solution generating technique, not less fertile than the previous 
one, is due to Belinsky and Zakharov [7, 8] and is usually referred to as 
the method of solitons (for a very lucid comparative analysis of the above 
techniques, see Ref. [9]). 

The new models constructed by the two methods mentioned above 
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brought to the surface a surprising result regarding the outcome of the 
collision of a pair of plane waves: The development of a space-like 
singularity a finite time after the instant of collision is not a generic feature 
of the process, as the early models had led us to believe. The first solution 
to show atypical behavior was obtained by Chandrasekhar and 
Xanthopoulos [10]. Using the Chandrasekhar-Ferrari technique, the 
above authors constructed a model representing the collision of variable 
polarization shock waves accompanied by impulsive waves in which the 
usual space-like singularity sealing off the future of the interaction region 
does not appear. Instead, the solution can be analytically extended across 
this hypersurface, and the singularity that eventually develops in the model 
turns out to be time-like. 

The same type of behavior was found to characterize a subset of the 
class of solutions constructed by Ferrari and Ibafiez [9] using the 
Belinsky-Zakharov soliton technique. The Ferrari-Ibafiez solutions also 
represent the collision of a pair of shock waves accompanied by impulsive 
waves but, in contrast with the Chandrasekhar-Xanthopoulos model, the 
approaching waves have constant and parallel polarization. 

In this paper a new three-parameter class of colliding plane waves 
solutions is presented. It is a two-parameter generalization of the 
Ferrari-Ibafiez class of solutions mentioned above and, in general, 
represents the asymmetric collision of a pair of gravitational waves with 
constant and parallel polarization--one of which has a smooth or unboun- 
ded wavefront or is a shock or impulsive wave, or a shock wave accom- 
panied by an impulsive one, and the other is a plane wave of any of the 
previous types. It is found that, for almost all of the above kinds of colli- 
sion, there is a continuous range of the parameters for which the curvature 
singularity on the "focusing hypersurface" is avoided; therefore, the corre- 
sponding solutions can be analytically extended beyond this surface. This 
result offers concrete support for the new picture that is now emerging with 
regard to the singular behavior of colliding wave solutions. Further 
support in this direction comes from the analysis of the behavior of the 
most general solution describing collision of plane gravitational waves with 
constant polarization carried out very recently by Feinstein and Ibafiez 
[ 11] and communicated to us while this manuscript was being prepared. 

The structure of the paper is as follows. In Section 2 we use the 
Chandrasekhar-Ferrari gauge to obtain the solution in the interaction 
region formed after the collision of the waves. Using the Khan-Penrose 
technique, the solution is extended toward the past of the interaction 
region in Section 3. In Section 4, the Weyl scalars are computed, whereby 
the nature, as well as the singularity behavior, of the waves under collision 
is determined. 
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2. THE FIELD EQUATIONS A N D  THEIR S O L U T I O N  

In a coordinate system adapted to the pair of Killing vector fields 
admitted by space-times representing the interaction of gravitational plane 
waves, the metric can be written in the form [6] 

d s 2 : e  0 x / A  [ A - ' ( d r l ) 2 - 6 - ' ( d # )  2] 

-- % ~  [z(  dx2)2 j- Z -  I( dX3 -- q2 dx2) 2] (1) 

where 

A = 1 - -  ;12 ~ = 1 - -  # 2  (2) 

and 0, Z, and q2 are functions of t/ and # only. The time-like coordinate 
r/~ [0, 1 ) and measures time from the instant of collision, while # e ( - 1, 1) 
and measures the normal distance from the (x 2, x 3) planes spanned by the 
Killing vector fields. 

When the approaching waves have aligned constant polarization, one 
can set 

q 2 : 0  (3) 

globally. Then, the Einstein vacuum equations reduce to [6] 

6 1#r + A -lr/r = -X-2X,~Z,~ 

2r/0., + 2#0.~ = 3A -~ + 6 -1 - )~-2[A(x.~/)2 "~ 15(X,#) 2 ] 

and 

(4) 

(5) 

z [ ( a z . , ) . ,  - ( 6 z . , ) . . ]  = a ( z . , )  = - 6 ( z . , )  = (6) 

where ( ).x -- 0( )/c?x. 
Introducing the function V via the equation 

V = l n  Z 

we can write equation (6) in the form 

( A V , ) . , -  (6V~).~ = 0 

An obvious solution of Eq. (8) is given by [12] 

VI = a In 6A = a ln(1 - r/2)(1 - #2) 

(7) 

(8) 

(9) 
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where a is an arbitrary constant. Separation of variables, on the other 
hand, leads to the solution [5] 

V2 = ~ [AtPt(t/) Pt(#) + BtP~(tl) QI(#) + ClQl(tl) PI(#) + D~Qt(rl) Qt(#)] 
l = 0  

(10) 

In the last expression A~, Bt, C~, and D~ are arbitrary constants, while P~ 
and Qt are the Legendre functions of the first and second kind, respectively. 

As noted by Griffiths [5], the function V corresponding to the well- 
known colliding wave solutions of Szekeres [1, 2] and Khan and Penrose 
[3] has the form (10). This is also the case with a class of solutions 
obtained recently by Ferrari and Ibafiez [13], while in a second class of 
solutions obtained by the same authors V has the form V= VI+ V2. 
Specifically, in the latter of the Ferrari-Ibafiez solutions [-9] 

V= a ln(1 - r/2)(1 - #2) _ 2Qo(r/) Po(#) (11) 

On the basis of Griffiths' observation, we have chosen to consider the 
case where, in the interaction region, 

V= a ln(1 - r/2)(1 - #2) _ 261Qo(r/) Po(#) - 262Po(rl) Qo(#) 

1 - q  1 - #  (12) = a ln(1 - q2)(1 - #2) + 61 in ~ + 62 In 1 +-----~ 

with 61, 62 arbitrary constants. What makes this generalization of the 
Ferrari-Ibafiez solutions interesting is the fact that it covers the physically 
rich family of the Szekeres metrics as well, since the latter is obtained by 
letting a = 0  in (12). 

In order to complete the solution of the field equations in the inter- 
action region, let us first write the function ~ in the form 

~O = ln[(~/2 - # 2 ) / A  3/4~1/4] -q- S (13) 

Inserting this expression into Eqs. (4) and (5), and taking into account (7), 
we obtain 

and 

6 - ~ # s  + A - lr/X.u = - V ,  V~. (14) 

2tlS,, + 2#X.~ = -A(V, , )  2 - 6(V.u) 2 (15) 
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respectively. With V given by Eq. (12), the system (14) and (15) is easily 
solved to give 

V" = __(1~ 1 -I- 62 )  2 ln(r/+/~) - (61 - 62) 2 ln(r/-- #) 

+ (a + a~) 2 ln(1 -- r/) + (a-- 61) 2 ln(1 + r/) 

+ ( a + a z ) 2 1 n ( 1 - 1 ~ ) + ( a - - a 2 ) 2 1 n ( l + # ) + l n C o  (16) 

where Co is an arbitrary constant. 
Gathering the above results, we conclude that the metric in the inter- 

action region is given by Eq. (1) with 

e ~" = Co(q + H) ~ (rl -- I~) '~ (l - t/) p (1 - #)~ 
(1+ ~)" (l+~,y 

(171 
Z = \ l + q J  \ 1 + # /  E(1- r /2) (1-#2) ]~  

q2 = 0 

where 

2 
0~= 1 - - ( 6 1 - ~ "  2) ' 

= (a + 62) 2 - 1/4, 

f l = 1 - ( 6 1 - 6 2 )  z, p =  (a + 6 1 ) 2 -  3/4, 
( 1 8 )  

r =  3 / 4 - - ( a - - 6 1 )  2, s =  l / 4 - - ( a - - ~ 2 )  z 

A form of the metric which is convenient for the following discussion 
can be obtained by the coordinate transformation 

t l = u x / l - v 2 + v x / 1 - u  2, # = u x / 1 - v 2 - - v x / 1 - u  2, 

It reads 

where 

(1-u2)1/: (1-va)V2-uv 

( 1 - , 7 ) ,  ( l - u )  ~ 
x u~v ~ du dv 

(1 +~)r  (1+~)"  

-(1-u2-~2)[(z(dx2)2+Z l ( d x 3 )  2 ] 

u, V>0 

(19) 

(20) 

(21) 
- - \ 1  + ~ , /  \1 + . /  

2=2~+ a 0 / ~ + 2 C o ,  and r/and/~ are expressed in terms of the null coordinates 
u and v as in Eq. (19). 
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3. EXTENSION OF THE SOLUTION 

Equations (20) and (21) determine the space-time metric only in the 
interaction region where u > 0, v > 0, and u: + v 2 < 1. In order to obtain the 
metric in the past of this region, one usually follows Khan and Penrose [3] 
in letting 

u ~ u H ( u )  and v --* v H ( v )  (22) 

in the metric coefficients obtained in the region of interaction. Here, H 
denotes the Heaviside unit step function. 

In our case, however, the direct application of the Khan-Penrose 
algorithm is hindered by the presence of the factors u ~, v ~ in guy, unless 

= fl = 0. But this difficulty is easily overcome by letting 

U = ~n a n d  v = gm (23) 

and choosing n and m to positive and equal to 

n = ( l + ~ )  -1  m = ( l + f l )  - 1  (24) 

Indeed, the substitution of Eq.(23) into (20) and (21) leads to the 
expression 

ds z = 2e - v  du dv - e -  U [ e V ( d x 2 ) 2  .-}- e - V(dx3)2-[ (25) 

where 

--M (1 __ /,/2n)1/2 ( l  - - l )2m)l /2--unl)m (1 - - ~ ) P  (1 __#)a  
e - -  (1 -- ~12n) 1-1/2m (1 -- l)2m) 1-1/2n (1 ..~ yl )r (1 .~_ ].s 

e-  u = 1 - u 2 n  - 1) 2rn 

e V = ( l _ _ u 2 n  v 2 m ) 2 a ( 1 - - l " ] ~ 6 ' ( l - - 1 1 )  62 
k,1 + r/,/ \ l + # J  

(26) 

and r/,/~ are given by 

g ] = U n ~ - l - v m N / 1 - - u Z n ,  k t - = - U n x / 1 - - v 2 m - - v m  ~'~'~u2n (27) 

In writing Eqs. (25)-(27) we dropped the tildes from fi and g for 
convenience in notation and used the arbitrariness of ao to set mna2o = 2. 

With the metric in the interaction region in the form given by 
Eqs. (25)-(27), the Khan-Penrose extension technique can be immediately 
applied and the result reads as follows. 
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In Region I, where  u < 0 and  v < 0, 

ds  2 = 2 d u  dv  - ( d x 2 )  ~ - ( d x 3 )  ~ (28) 

In Region II, where u < 0 a n d  0 < v < 1, the metric has the form (25) with 

e -M = (1 + vm)  ~ r+ (1 --m/2- (1 -- Vm) p - ' +  (1 --.)/2n 

e v =  1 - v 2'' (29) 

e V =  (1 + ~)m) r +2a (1 - -  vm) ~1-~2+2a 

Finally, in Region III, where 0 < u < 1 and v < 0, the line element is given 
by (25) but now, 

e -M = (1 + u ')  . . . .  +(1--m)/2m ( 1  - -  un) p+rT+{1 --m)/2m 

e - U =  1 - u 2" (30) 

e V =  (1 + u") 2a-al-a2 (1 - -  un) 2a+61+62 

The projection of the above regions, as well as that of the region of inter- 
action (Region IV), in the (u, v)-plane is shown in Fig. 1. 

According to Eq. (28), space-time is flat in Region I. Equations (29) 
and (30), on the other hand, show that, in Region II (III) the metric 
depends on the null coordinate v (u) only. This suggests that the extension 
obtained above represents a pair of gravitational waves propagating 
toward each other in a flat region and colliding at (u, v) = (0, 0). However, 
before this interpretation is accepted, we must prove that the Einstein 
vacuum equations are indeed satisfied in Regions II and III, as well as on 
the hypersurfaces u = 0 and v = 0 which separate Regions I-IV from each 
other. 

Consider, in this direction, the component R~v of the Ricci tensor 
corresponding to the line element (25), where M, U, and V are functions of 
u and v, only. It reads 

2Rw = - 2 U ~  + (U. )  2 + (V~) 2 - 2 M .  U~ (31) 

and, in Region II, it is the only component of the Ricci tensor that does 
not vanish identically. Thus, in this region, the Einstein vacuum equations 
reduce to R~ = 0. It is, then, a matter of simple algebra to show that the 
last equation is indeed satisfied by the metric coefficients given by (29). In 
a similar fashion one proves that the Einstein vacuum equations are 
satisfied in Region III, also. 

With regard to the hypersurfaces, u = 0 and v = 0, let us note that the 
Khan-Penrose substitutions lead, in general, to the appearance of matter 
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distributed on them. Thus, using Eqs. (22) and (31) together with the fact 
that the Einstein vacuum equations are satisfied on both sides of the v = 0 
hypersurface, we find that 

Rvv = ~vf(V) (32) 

where 6(v) denotes the delta function of Dirac. 
Therefore, the Einstein vacuum equations will not hold on the hyper- 

surface v = 0 if the condition 

~U = 0  (33) 
v = O  

is not satisfied. In fact, it is easy to show that this is the only condition that 
must be satisfied along v = 0  in order for this hypersurface to remain 
vacuus. The symmetry between the roles of u and v, on the other hand, 
leads directly to 

~U 
~uu u = 0  (34) 

as t he  condition for the hypersurface u = 0  to be vacuus. Combining 
Eqs. (26), (33), and (34), we conclude that no matter  will appear on the 
separation surfaces u = 0 and v = 0, provided m, n > 1/2. 

However, it is easily verified that for 1/2 < m, n < 1 the extension 
obtained above is only C o . Therefore, we will impose the condition 

m, n >~ l (35) 

so as to make the extension C t -  (see p. 11 of Ref. [-14] for definitions) or 
smoother. As it will become clear in the following section, condition (35) 
guarantees the integrability of the Weyl scalars corresponding to the waves 
under collision. 

4. THE B E H A V I O R  OF THE WEYL SCALARS 

Let x ~ and x ~ stand for the coordinates u and v, respectively. Then, 
relative to the metric (25), the vectors (1, n, m, rh), where 

la=eM/26~, na=eM/2~), ma:(eU/2/~-2)(e-V/2~'~+ieV/Z6~) (36) 
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form a null tetrad. As shown by Szekeres [2], the components of the Weyl 
tensor in the above tetrad (Weyl scalars) read as follows. 

0o = -(eM/2)( g, l l -  U.1 V,1 .ql_ M,1 V l) 

~/4 = --(eM/2)( V, oo - U o V,o + M,o V,o) 
(37) 

@2 = ( eM/2 )  M ,  oj 

In Region I, all the Weyl scalars vanish, of course. From Eq. (29) and 
(37), on the other hand, it follows that in Region II the only nonvanishing 
Weyl scalar is ~o which is given by the expression 

@IOI = _eaU+ M { 2 a m 2 ( 1  _ 4a 2) u 4 m  -- 2 - -  12a2m2(61 _ 62) D 3 m  -- 2 

- 6 a m ( 2 r n -  1) v 2 m - 2  - - m ( m -  1)(61 - 6 2 )  v m 2} (38) 

Similarly, ~4 is the only nonvanishing component in Region III and it is 
given by 

I l I  _ e a V + M { 2 a n 2 ( 1  _ 4a 2) b /4n-2  12a2n2(61 + 62 ) u3n 2 
4 

--  6 a n ( 2 n  --  1 ) u 2" -2  _ n (n  - 1)(61 + 62) u n 2 } (39) 

In Region IV, all three of the components ~'o, ~2, and ~4 are non- 
vanishing, but the corresponding expressions in terms of u and v are too 
complicated to be given here explicitly. Anyhow, as far as the behavior of 
the Weyl scalars across u = 0 and v = 0 is concerned, we only need to know 
the u ~ 0  + and v ~ 0  + limits of ~2 TM. Because, using Eq. (37), we easily 
find that the Weyl scalars behave as follows as we cross the null hyper- 
surface separating region A from region B (A ~ B)': 

( i )  I V  ~ II: 

~'o is continuous 

Oz = H(u) ~,~v (40) 
~4 = H ( u )  0 TM + eMn(61 + 62) u n -  1(1 -- v 2m) -x/2 6(u) 

(ii) I V ~ I I I :  

~o = H ( v )  OIo v + eMrn(g)l --  62) v m - 1(1 - u 2n) -~/2 6(v) 

~k2 = H(v) ~p~v (41) 
04 is continuous 



(iii) I I ~ I :  

tPo = H(v) ~loI + m(61 - 62) v m - - 1  3(1)) 

(iv) I I I ~ I :  

(42) 

~14 = H(u) ~Ian + n(61 + 62) u " -1  6(u) (43) 

~tIV v~- '~ rim(61--32) u"-  lvm- l(2au" + 61 + 62)(1 -- U2n) -3/2 (e~tlv=o) 

(45) 

Equat ions  (38) and (42) show clearly that  the parameter  m determines 
the type of the wave incident from the left in Fig. 1. Specifically, by 
observing the behavior  of ~o on crossing the v = 0  hypersurface in the 
direction II  ~ I, we can distinguish the following cases. 

V 1 " u2n- v2m: 0 U 
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Fig. 1. The (u, v)-plane of a colliding plane waves space-time. Region I is flat. The null 
hypersurface u = 0 (v = 0) represents the wavefront of the wave incident from the left (right). 
The top boundary u2"+ v 2m- 1 = 0 of the region of interaction (IV) is the "focusing hyper- 
surface." 

and 

As for the limiting behavior  of  O~v ment ioned earlier, we find that  

11112 v u~O +> nm( 61+ 62) un- lvm- l( 2avm + 61--62)( 1 -  v 2m) 3/2 (eMlu=O ) 

(44) 



Asymmetric Collision of Gravitational Plane Waves 817 

(i) m = 1. Then, 

~b o = 6 a l l ( v )  + (61 - 62) 6(v) (46) 

Therefore, when a-r 0, the radiation incident from the left has 
the form of a shock wave accompanied by an impulsive one. 
When a = 0, only the impulsive wave remains. 

(ii) l < m < 2 .  Then, 

Oo = m ( m  - 1)(61 - 62) v '~ - 2 H ( v )  (47) 

This means that the incoming wave has an unbounded 
wavefront of the form v-~', with ~ e (0, l ). 

(iii) m = 2. Then, 

Oo = 2(6, - 62) H ( v )  (48) 

which corresponds to a shock wave. 

(iv) m > 2. Then O0 is continuous, with 0o (0 )=  0 and the wavefront 
of the wave incident from the left is smooth. 

By replacing v by u and m by n (and, therefore 6~ - 62 by 61 + 62) in 
Eqs. (46)-(48), we obtain the type of the wave incident from the right in 
Fig. 1. It is, then, obvious that, by choosing the values of the parameters 
a, m, and n appropriately, we can obtain a variety of situations, whereby 
an impulsive wave riding a shock wave collides with a smooth wave, a 
shock wave collides with an impulsive or shock wave, e.t.c. 

So far, we have studied the behavior of the Weyl scalars only on part  
of the boundary of Region IV, namely on the hypersurfaces u = 0 and v = 0. 
As far as the interpretation of the solution in terms of colliding waves is 
concerned, the above analysis is sufficient. However, in order to determine 
the end result of the collision process, one needs to know the behavior of 
the Weyl scalars on the rest of the boundary of Region IV, namely on the 
hypersurface u 2" + v 2'~ = 1. 

Returning to the coordinate system of Section 2 and using Eqs. (1), 
(2), and (17), we find that 

det [gab(r/,/.t)] = - - A e  2r = - C o  2 (1 Z r/)2P___f +~ (1 - ].L) 2r 
(1 "J- ~)2r--l" (1 A7 ~)2s (/,] _~ ~)2a (/1 __ ],/)2fl 

(49) 

therefore, as r/-* 1 the metric becomes singular, unless 

2p + 1 = 0 (50) 
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which is equivalent to 

(a + 61) 2 = 1/4 (51) 

as follows from Eq. (18). Detailed calculations show that (50) is also a 
sufficient condition for the Weyl scalars in Region IV to remain bounded 
as t/--. 1. Specifically, when condition (51) holds, we find that the Weyl 
scalars in the region of interaction obtain the following limiting values, as 
t - 1 -  u 2"-/)2m ....~ 0 +,  which according to Eq. (27), corresponds to ~/--* 1. 

iA2(ns -- 1 ) (~ 1 v2m )1 ~IV __. 2r + ~ - ~ -  5/2nm v 2 ~  y) [ ~  _ (a _ 52)2 _ gau2n( 62 + 

ffIoV ~ -(3/2)(a + 61) -1 (m /n )  u 1 - 2"v2'~- 1 ~O[v (52) 

~OlV ~ - ( 3 / 2 ) ( a + 6 1 )  l ( n /m)  u2n--1/)l--Zrn'IVI/12 

Thus, when Eq. (51) (compare with Eq. (14) of Ref. [11]) is satisfied 
no curvature singularity develops on the "focusing hypersurface" 

= l ( t=0) .  In this case the metric is extendible toward the future of the 
region of interaction, as well as toward its past. The specific form of the 
future extension of the subclass of models in which condition (51) holds 
will be considered in a separate article. Here, we restrict ourselves to 
pointing out that all of the extendible models become Petrov type D as one 
approaches the focusing hypersurface from the interior of Region IV. This 
follows from the theorem proved in Ref. [10] and the fact that, according 
to Eq. (52), 

9 (~v)  2 ~ ~o~IV~'V~, (53) 

as t ~ 0  +. This is also the case (i.e., space-time is of Petrov type D) 
with the extendible colliding plane wave models obtained previously by 
Chandrasekhar and Xanthopoulos [10] and Ferrari and Ibafiez [9]. 
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